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L imited infrastructure, scarce educational 
resources and unreliable internet access 
hinder physics and photonics education in 
under-resourced regions, perpetuating deep 
inequities in science, technology, engineer-

ing and mathematics (STEM) education. This article 
explores how small language models (SLMs)—compact, 
AI-powered tools capable of running offline on low-
power devices—offer a scalable and practical solution. 

By functioning as virtual tutors, supporting native-
language instruction and enabling interactive learning 
experiences, SLMs can help mitigate the shortage of 
trained educators and lack of access to laboratory 
facilities. With targeted investment in AI technologies, 
SLMs can narrow the digital divide and foster scientific 
empowerment in marginalized communities. 

The digital divide in STEM education
STEM education is a driving force behind innovation, 
economic development and technological progress. 
Yet access to quality STEM education remains limited 
in low-resource regions. The state of physics educa-
tion in Africa exemplifies this disparity: According 
to the African Development Bank, fewer than 5% of 
African students pursue tertiary education in STEM 
fields, with physics ranking among the least popu-
lar subjects. 

Several factors contribute to the underrepresenta-
tion of students in STEM disciplines in low-resource 
regions. Many schools lack essential learning resources 

and infrastructure. For instance, approximately 50% 
of secondary schools in Africa do not have access to 
electricity, and over 90% lack adequately equipped 
laboratories. This shortfall severely hinders hands-on 
learning, reduces student engagement and negatively 
impacts educational outcomes. 

Another challenge is the shortage of qualified 
STEM educators, leading to poor academic perfor-
mance and a lack of confidence in pursuing STEM 
careers. Furthermore, economic hardship often forces 
students to prioritize work over education, leading to 
lower enrollment and retention in STEM disciplines. 
Gender disparities further reduce participation. Over-
coming these societal barriers requires targeted policies, 
mentorship programs and initiatives that foster gender 
inclusivity in STEM.

Foundational literacy and numeracy skills are also 
frequently lacking in students in under-resourced coun-
tries despite increasing school enrollment numbers. 
In Kenya, Tanzania and Uganda, 75% of third-grade 
students cannot read a basic sentence. 

Addressing these challenges requires comprehen-
sive educational reform—spanning curriculum design, 
teacher training, infrastructure investment and targeted 
interventions to create equitable opportunities for stu-
dents in underserved regions—all of which are costly 
and resource-intensive.

AI and machine learning offer a promising, low-
cost solution. Large language models (LLMs) such as 
ChatGPT have emerged as powerful tools for personal-
ized learning and tutoring. However, their dependence 
on cloud computing and stable internet limits their 
effectiveness. According to UNESCO, approximately 
89% of students in sub-Saharan Africa lack access to a 
household computer, and more than 80% do not have 
internet access at home. 

SLMs provide a compelling alternative. They are 
lightweight, domain-specific and designed for local 
deployment. They can run efficiently on smartphones 
or computers, enabling interactive, personalized learn-
ing without requiring internet access. In this article, 
we explore the current state of SLM development and 
highlight the models’ potential to advance STEM edu-
cation in underserved settings.

Limitations of LLMs: The case for SLMs
LLMs rely on transformer architectures that address 
the critical limitations of earlier sequential models. A 
key concept in language modeling is the token, which 
refers to the fundamental units of text that the model 
processes. Tokens can be individual words, subword 
units or even characters, depending on how the text 
is tokenized. For example, in a phrase like “machine 
learning,” the model might treat it as two separate 
tokens (“machine” and “learning”) or as a single unit, 
depending on how it is parsed.

A fundamental breakthrough of transformer models 
is the self-attention mechanism. Unlike previous models 
that processed tokens sequentially, self-attention com-
putes relationships among all tokens simultaneously. 
This allows the model to capture long-range depen-
dencies, enhancing its ability to understand complex 
linguistic patterns and improving performance across 
a wide range of language tasks. 

Consider the sentence: “The physicist who discov-
ered the new star, which had been hidden for centuries, 
received an award.” Self-attention effectively would 
resolve dependencies across varying distances, including 
long-range associations that traditional models struggled 

with. For instance, the model correctly associates the 
verb “received” with “physicist” despite intervening 
clauses like “which had been hidden …”.

When generating “received,” the self-attention 
model specifically focuses on “physicist” rather than 
distracting words like “star” or “centuries.” Similarly, 
when resolving “who,” it directly links it back to “phys-
icist,” something that traditional models struggle with. 

Self-attention is especially effective when process-
ing long texts, such as answering questions based on a 
research paper. In these scenarios, the model processes 
the entire text—both the questions and the document 
content simultaneously—allowing it to efficiently iden-
tify relevant information across the full context and 
establish meaningful connections between distant 
parts of the text.

Another crucial component of transformers is multi-
head attention, which allows the model to analyze text 
from different perspectives simultaneously. Intuitively, 
each attention head specializes in different linguistic 
aspects—one may focus on syntax, another on semantic 
meaning and another on contextual relationships—
potentially capturing different aspects of a sentence’s 
meaning and developing a more comprehensive and 
nuanced understanding of the text. 
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Small language models can help bridge the digital divide 
by enabling interactive on-site science education, bringing 
AI-powered learning to students without the need for internet 
access or advanced infrastructure.
S. Cook-Ordonez

STEM education is a driving force behind innovation, economic 
development and technological progress. Yet access to quality 
STEM education remains limited in low-resource regions.

Visualization of GPT-2 attention for the sentence: “The physicist who discovered the new star, which had been hidden for centuries, received an 
award.” Top: Top five attention weights from the token “received” to preceding tokens. Bottom: Heatmap of three attention heads in the final layer: 
Head 1 focuses on “The physicist,” Head 3 on “The” and punctuation, and Head 8 on “who” and punctuation. Values are normalized as percentages.
A. Ghorbani and H. Fattahi

Low attention High attention

Head 1

Head 3

Head 8

Average

31  30        OPTICS & PHOTONICS NEWS  SEPTEMBER 2025 SEPTEMBER 2025  OPTICS & PHOTONICS NEWS



Although LLMs have transformed natural language 
processing, they require significant power and energy. 
For instance, training a 70-billion-parameter model 
like Llama 2 emits 291 tons of CO2—equivalent to the 
annual emissions of 65 gasoline-powered cars. Even 
larger models, such as Llama 3.1, consume exponen-
tially more resources. 

While proprietary LLMs continue to push the bound-
aries of AI, their immense computational demands and 
dependence on cloud-based infrastructure limit their 
widespread use in many real-world applications. These 
models are particularly valuable in high-stakes research, 
advanced natural language processing and enterprise 
AI solutions, where performance takes precedence over 
cost. Yet their cost and reliance on internet connectivity 
are significant barriers. To overcome these challenges, 
the AI community has increasingly shifted its focus 
toward SLMs—compact yet powerful architectures 
that strike a balance between performance, efficiency 
and adaptability. Unlike their larger counterparts, 
SLMs represent a scalable, cost-effective alternative that 
supports inclusive and practical AI innovation across 
a wide range of environments.

SLM design, adaptability and deployment
SLMs are designed to operate efficiently on resource-
constrained devices while maintaining strong 
performance on domain-specific tasks. This progress 
has been fueled by improved data curation, refined 
training methodologies, optimized architectural designs, 
enhanced fine-tuning strategies and inference-time 
efficiency optimizations.

Training-time techniques
Pretraining is the foundational stage where language 
models learn general linguistic patterns and world 
knowledge. LLMs typically rely on massive web-scale 
datasets, often containing trillions of tokens from 
heterogeneous sources like websites, books and online 
forums—an approach that introduces significant noise 
and redundancy. 

SLMs adopt a more targeted approach. By prioritizing 
the use of high-quality, domain-specific datasets, they 
maximize learning efficiency within tight computational 

budgets, allowing them to deliver competitive perfor-
mance despite their smaller scale. This strategy has 
proven particularly effective in domains like mathe-
matical reasoning, where data quality often outweighs 
model size. Strategic data curation—deduplication, 
domain selection and dataset balancing—can reduce 
data volume while preserving generalization capabilities. 

Fine-tuning techniques
Fine-tuning adapts pretrained models to real-world 
applications. While pretraining provides broad linguis-
tic and domain knowledge, fine-tuning tailors models 
with specialized applications. 

Instruction tuning transforms models into respon-
sive and interactive systems by training on conversational 
datasets using human-provided instructions. This is 
well-suited for applications such as AI-driven tutoring 
systems and specialized research assistants.

Domain adaptation refines SLMs for specialized 
domains such as science, mathematics, medicine and 
legal reasoning by training on curated domain-specific 
datasets. For example, models like DeepSeekMath, 
pretrained on math-related corpora, demonstrate that 
relevance often surpasses larger models in achieving 
high performance.

Low-rank adaptation (LoRA) is a fine-tuning tech-
nique that adapts a pretrained model for a specific 
task by modifying only a small portion of its overall 
knowledge. Instead of updating all model parameters, 
LoRA uses low-rank matrices to efficiently capture 
task-specific changes. Its modularity means multiple 
modules can be trained independently for different 
tasks and seamlessly integrated into the same base 
model—just like swapping lenses on a camera to suit 
different environments. This makes LoRA especially 
useful for multi-domain adaptation, enabling multiple 
compact, task-specific models to operate efficiently on 
limited hardware.

Reinforcement learning-based tuning, which uses 
techniques like Group Relative Policy Optimization, 
has gained particular attention for its effectiveness in 
mathematical reasoning tasks, demonstrating sub-
stantial improvements in problem-solving accuracy 
and model adaptability.

By prioritizing the use of high-quality, domain-specific datasets, 
SLMs maximize learning efficiency within tight computational 
budgets, allowing them to deliver competitive performance.

Overview of the training and deployment pipeline for LLMs, illustrating the stages from pretraining to real-world application. 
A. Ghorbani and H. Fattahi
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begins with hardware acceleration, builds upon efficient 
software frameworks and ultimately enables real-world 
applications. Each layer plays a vital role in making 
edge-based AI more accessible, private and efficient.

Scientific and technical applications
The recent advancements in SLMs have opened up 
numerous opportunities for scientific applications by 
enhancing efficiency, reducing computational costs and 
improving adaptability across specialized domains. 

In mathematical reasoning, SLMs like DeepSeek-
Math have been fine-tuned using mathematical datasets 
such as Proof-Pile-2, enabling strong performance on 
benchmarks like MATH and SAT, surpassing previous 
open-weight models. In science, SciGLM supports col-
legiate-level reasoning. AstroLlaMA is improving tasks 
in astronomy, like automated paper summarization.

Notably, recent benchmarks show SLMs can rival 
or outperform earlier LLMs in STEM domains. On the 
massive multitask language understanding (MMLU) 
benchmark, covering 57 academic and professional 
subjects, models like Qwen 2.5 and DeepSeekMath out-
perform many legacy LLMs—all while being efficient 
enough for deployment on edge devices. This progress 
holds promise for education and professional use in 
resource-limited settings.

Equitable and inclusive education
SLMs are uniquely suited to educational settings in 
underserved communities. They operate efficiently on 
low-power devices with limited computational capacity, 
removing the dependency on stable internet connec-
tivity or costly infrastructure. 

In physics and photonics, SLMs can serve as on-
demand, offline virtual tutors, explaining complex 
topics and supporting interactive, localized learning. 
SLMs can be fine-tuned for language localization, 
allowing them to operate in students’ native languages, 
which increases accessibility and fosters linguistically 
inclusive learning environments. 

Educators also stand to benefit. SLMs can generate 
lesson plans, create problem sets and translate dense 
academic texts into simpler language. By offering cul-
turally and ethically adaptive outputs, SLMs can align 

educational content with local values and social con-
texts—an essential consideration for meaningful and 
sustainable learning. 

SLMs also promote collaborative and project-based 
learning. Students can use shared devices to work 
together on science problems, run simulations or con-
duct guided discussions, with the model acting as a 
moderator or knowledge source. In settings where lab 
access is limited or nonexistent, this kind of digitally 
mediated collaboration becomes a valuable substitute 
for hands-on experimentation.

In sectors like health care, defense and field research, 
SLMs could also address broader structural challenges 
associated with cloud-based AI. They reduce reliance on 
expensive, centralized infrastructure, mitigate latency 
issues and environmental costs and enhance data pri-
vacy by keeping sensitive information on-device.

Of course, challenges remain, many of which are 
active areas of research and must be considered when 
implementing real-world solutions. Hallucination 
remains a key concern, particularly in educational con-
texts where factual accuracy is critical. Additionally, 
multilingual performance still lags in many low-resource 
languages, limiting accessibility for linguistically diverse 
communities.

Realizing this vision will require investments in 
affordable hardware essential to ensure that these AI 
tools reach the classrooms and communities that need 
them most. Small language models hold immense poten-
tial to bridge the educational gap and digital divide in 
underserved regions, providing students and educators 
with tools to explore the wonders of physics and pho-
tonics, engage with cutting-edge knowledge and pursue 
their academic dreams. As educators and researchers, 
it is our collective responsibility to ensure that no one 
is left behind in the quest for scientific discovery and 
innovation. OPN
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Test-time compute
Test-time compute (TTC) dynamically adjusts computa-
tional effort during inference. This concept distinguishes 
between two modes of thinking: System 1, which is 
fast, intuitive and effortless, and System 2, which is 
slower, deliberate and cognitively demanding. For 
example, answering factual questions like “What is 
the capital of France?” might only require low TTC 
processing, whereas solving multi-step mathematical 
proofs demands high-TTC deliberation.

This adaptive strategy allows SLMs to adjust their 
resource usage based on task complexity. For example, 
a 7-billion-parameter SLM leveraging TTC strategies 
has matched or surpassed leading commercial mod-
els like GPT-4o in specialized domains—up to 1000× 
reduction in compute cost—supporting sustainable AI 
on low-resource devices. 

Knowledge distillation
Knowledge distillation enables the transfer of knowl-
edge from large teacher models to smaller, more efficient 
student models. Beyond simple output imitation, it 
teaches small models nuanced reasoning patterns 
and task-specific expertise. Recent studies show that 
compute-efficient distillation strategies can enable a 
3-billion-parameter (3B) model to outperform LLMs 
100 times their size. Distilled variants of DeepSeek-R1-
Distill outperform much larger non-reasoning models 
such as GPT-4o on a range of benchmarks. 

Quantization
Quantization reduces the computer memory and 
processing power required to run LLMs by using 

low-precision numerical formats. Switching from a 32- 
or 16-bit floating point to lower-precision formats such 
as 8-bit integers (INT8) or smaller can shrink model size 
by 4×, 8× or 16×, often without major performance loss. 
This enables large models to run efficiently on smaller, 
less-powerful devices like smartphones, laptops or 
single-GPU systems. 

Advancements in on-device deployment
SLMs are increasingly being deployed directly on devices 
like smartphones, laptops and Internet of Things (IoT) 
systems thanks to innovations in three critical layers 
of the technology stack: hardware, frameworks and 
applications.

Hardware: Specialized chips for everyday AI
Modern systems-on-chip (SoCs) designs include three 
types of compute units—central processing units (CPUs), 
graphics processing units (GPUs) and neural processing 
units (NPUs)—purpose-built for high-throughput, low-
power AI tasks. Prominent examples include Apple’s 
Neural Engine, Google’s Tensor SoC and Qualcomm’s 
Snapdragon series.

Framework: Bridging models to hardware
Inference frameworks are essential for running AI mod-
els efficiently on edge devices by translating models 
into hardware-optimized code. They reduce memory 
and compute demands through methods like quantiza-
tion and apply device-specific optimizations for CPUs, 
GPUs and NPUs. Lightweight tools such as llama.cpp, 
MLC-LLM, ExecuTorch (Meta), LiteRT (Google) and 
MNN enable fast, portable inference across platforms. 
Newer solutions—including PowerInfer-2, HeteroLLM 
and llm.npu—further improve on-device performance 
through advanced scheduling and hardware-aware 
design. Together, these toolchains lower the resource 
barriers for deploying powerful AI models directly on 
mobile and embedded systems. 

Applications: Real-world on-device SLM use cases
Tools like Gemini Nano, Apple Intelligence or PocketPal 
AI can operate entirely offline and deliver features like 
summarization, text rewriting and smart replies. Tools 
like LM Studio also make it possible for users to run 
models locally on desktops and laptops. These exam-
ples represent just a fraction of a rapidly expanding 
ecosystem of on-device language model applications 
that deliver private, low-latency AI capabilities without 
relying on the cloud.

The on-device deployment of SLMs is made possi-
ble by a multi-layered system architecture. This stack 

In physics and photonics, SLMs can serve as on-demand, 
offline virtual tutors, explaining complex topics and supporting 
interactive, localized learning. 

References and resources: optica-opn.org/link/0925-slm.

Illustration of the knowledge distillation process for training 
a student language model. A teacher LLM is guided by seed 
knowledge and skill-specific prompts to generate domain-
relevant content to train the student model according to a 
defined learning objective. 
A. Ghorbani and H. Fattahi
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